The Planarity Theorems of MacLane and Whitney for Graph-like Continua
نویسندگان
چکیده
The planarity theorems of MacLane and Whitney are extended to compact graph-like spaces. This generalizes recent results of Bruhn and Stein (MacLane’s Theorem for the Freudenthal compactification of a locally finite graph) and of Bruhn and Diestel (Whitney’s Theorem for an identification space obtained from a graph in which no two vertices are joined by infinitely many edge-disjoint paths).
منابع مشابه
The Planarity Theorems of MacLane and Whitney for Graph–like Spaces
The planarity theorems of MacLane and Whitney are extended to compact graph–like spaces. This generalizes recent results of Bruhn and Stein (MacLane’s Theorem for the Freudenthal compactification of a locally finite graph) and of Bruhn and Diestel (Whitney’s Theorem for an identification space obtained from a graph in which no two vertices are joined by infinitely many edge-disjoint paths).
متن کاملPlanarity and duality of finite and infinite graphs
We present a short proof of the following theorems simultaneously: Kuratowski’s theorem, Fary’s theorem, and the theorem of Tutte that every 3-connected planar graph has a convex representation. We stress the importance of Kuratowski’s theorem by showing how it implies a result of Tutte on planar representations with prescribed vertices on the same facial cycle as well as the planarity criteria...
متن کاملPlanarity of Intersection Graph of submodules of a Module
Let $R$ be a commutative ring with identity and $M$ be an unitary $R$-module. The intersection graph of an $R$-module $M$, denoted by $Gamma(M)$, is a simple graph whose vertices are all non-trivial submodules of $M$ and two distinct vertices $N_1$ and $N_2$ are adjacent if and only if $N_1cap N_2neq 0$. In this article, we investigate the concept of a planar intersection graph and maximal subm...
متن کاملOn the planarity of a graph related to the join of subgroups of a finite group
Let $G$ be a finite group which is not a cyclic $p$-group, $p$ a prime number. We define an undirected simple graph $Delta(G)$ whose vertices are the proper subgroups of $G$, which are not contained in the Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge if and only if $G=langle H , Krangle$. In this paper we classify finite groups with planar graph. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010